Continuous Non-malleable Key Derivation and Its Application to Related-Key Security
نویسندگان
چکیده
Related-Key Attacks (RKAs) allow an adversary to observe the outcomes of a cryptographic primitive under not only its original secret key e.g., s, but also a sequence of modified keys φ(s), where φ is specified by the adversary from a class Φ of so-called Related-Key Derivation (RKD) functions. This paper extends the notion of non-malleable Key Derivation Functions (nm-KDFs), introduced by Faust et al. (EUROCRYPT’14), to continuous nm-KDFs. Continuous nm-KDFs have the ability to protect against any a-priori unbounded number of RKA queries, instead of just a single time tampering attack as in the definition of nmKDFs. Informally, our continuous non-malleability captures the scenario where the adversary can tamper with the original secret key repeatedly and adaptively. We present a novel construction of continuous nm-KDF for any polynomials of bounded degree over a finite field. Essentially, our result can be extended to richer RKD function classes possessing properties of high output entropy and input-output collision resistance. The technical tool employed in the construction is the one-time lossy filter (Qin et al. ASIACRYPT’13) which can be efficiently obtained under standard assumptions, e.g., DDH and DCR. We propose a framework for constructing Φ-RKA-secure IBE, PKE and signature schemes, using a continuous nm-KDF for the same Φ-class of RKD functions. Applying our construction of continuous nm-KDF to this framework, we obtain the first RKA-secure IBE, PKE and signature schemes for a class of polynomial RKD functions of bounded degree under standard assumptions. While previous constructions for the same class of RKD functions all rely on non-standard assumptions, e.g., d-extended DBDH assumption.
منابع مشابه
A new security proof for FMNV continuous non-malleable encoding scheme
A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...
متن کاملNote on the RKA security of Continuously Non-Malleable Key-Derivation Function from PKC 2015
Qin, Liu, Yuen, Deng, and Chen (PKC 2015) gave a new security notion of key-derivation function (KDF), continuous non-malleability with respect to Φ-related-key attacks (Φ-CNM), and its application to RKA-secure public-key cryptographic primitives. They constructed a KDF from cryptographic primitives and showed that the obtained KDF is Φhoe&iocr-CNM, where Φhoe&iocr contains the identity functi...
متن کاملNon-Malleable Functions and Their Applications
We formally study “non-malleable functions” (NMFs), a general cryptographic primitive which simplifies and relaxes “non-malleable one-way/hash functions” (NMOWHFs) introduced by Boldyreva et al. (Asiacrypt 2009) and refined by Baecher et al. (CT-RSA 2010). NMFs focus on basic functions, rather than one-way/hash functions considered in the literature of NMOWHFs. We mainly follow Baecher et al. t...
متن کاملCompletely Non-malleable Schemes
An encryption scheme is non-malleable if the adversary cannot transform a ciphertext into one of a related message under the given public key. Although providing a very strong security property, some application scenarios like the recently proposed key-substitution attacks yet show the limitations of this notion. In such settings the adversary may have the power to transform the ciphertext and ...
متن کاملCompletely Non-malleable Encryption Revisited
Several security notions for public-key encryption schemes have been proposed so far, in particular considering the powerful adversary that can play a so called “man-in-the-middle” attack. In this paper we extend the notion of completely non-malleable encryption introduced in [Fischlin, ICALP 05]. This notion immunizes a scheme from adversaries that can generate related ciphertexts under new pu...
متن کامل